Text. Important Formulas Numbers Doctor notes Extra notes and explanation. Lecture No.8 ) صدق هللا العم م

Size: px
Start display at page:

Download "Text. Important Formulas Numbers Doctor notes Extra notes and explanation. Lecture No.8 ) صدق هللا العم م"

Transcription

1 Text. Important Formulas Numbers Doctor notes Extra notes and explanation Lecture No.8 ار ك م الس م ع و ا ل ب ص ل و ج ع ل ش ( م ت ك ر ون و ا ل ف ئ د ة ل ع ل ك ) صدق هللا العم م 1

2 Mechanism of Hearing Objectives: 1-Describe sound characteristics and explain the difference between discrimination of loudness & pitch (tone). 2- Describe the steps involved in transmission of sound waves into neuronal activity in the inner ear. 3- Differentiate between the functions of the inner and outer hair cells. 4- Appreciate that deafness can be caused by defects in either conduction or neural processing of sound waves. 2

3 Characteristics of sound Sound is: a mechanical wave (travelling vibration of air). Or it is a vibration that propagates as an audible wave of pressure, through a transmission medium such as gas, liquid or solid. Sound waves are alternating regions of compression and rarefaction (expansion) of air molecules by vibrating body. Characteristics of Sound: 3

4 ONLY IN MALES SLIDES Cont. In human physiology and psychology, sound is the reception of such waves and their perception by the brain Hearing: Hearing is the ability to perceive sound by detecting vibrations through the ear. Humans have a narrow range of hearing compared to other species 20 Hz - 20,000 Hz. 4

5 Doctors notes When fork vibrates inward and outward, the air molecules surrounding it compress and rarefact. This change in air molecules pressure produces sound waves. Measurements of these waves are: 1. frequency التردد or tone: (number of cycles per second) and it is the reason why letters have different sounds (letter G has more cycles than letter C) and humans can hear frequencies between per second while animals can hear more and less and thus sometimes we see birds hiding before storms start. 2. amplitude/loudness/intensity: (how loud the voice is ex: raising the volume of TV). 3. timbre(quality): if we have pure tone of one sound or overtones of more than one tone overlapping. Ex: when someone has flu, vocal cord is covered by mucous and thus each point produces a different tone in the same time بحة and they overlap thus producing a low quality voice 5

6 Extra Relative magnitude of common sounds Loudness in Comparison to Faintest Audible Sound Sound Decibels (db) (Hearing Threshold = db) Rustle of leaves 10 db 10 times louder Ticking of Watch 20 db 100 times louder Whispering 30 db 1000 times louder Normal Conversation 60 db 1 million times louder Food Blender,Lawn Mower, Hair Drier 90 db 1 billion times louder Ambulance Siren 120 db 1 trillion louder Takeoff of Jet Plane 150 db 1 quadrillion times Louder 6 Hearing sensitivity is db less in absence of ossicular system and tympanic membrane

7 ONLY IN FEMALES SLIDES Anatomy of the ear The ear consists of External ear Middle ear Inner ear Pinna External canal Tympanic Membrane For the eardrum to move freely, the resting air pressure on both sides of eardrum must be equal. (funnel shaped, pointing inward) Malleus* Air filled cavity Ossicles (bones) Incus Muscles Stapes (with its foot sitting on the oval window of the inner ear) - Cochlea: is a snail like, coiled fluid-filled tubular system laying deep in the temporal bone. Contains the hearing sensory organ (organ of corti). - Bony labyrinth. - Membranous labyrinth. tensor tympan stapeduis 7 * Malleus is connected to the tympanic membrane by its lower end and to incus bone by its lower end. Wax has a bactericidal agent.

8 Functions of ear ** 1. dust stick to wax covering the external canal. 2. hair filtrating the air. 3. warming of air (low temperature damages cochlea). Functions of Ear: Hearing (parts involved External ear, Middle ear, Internal ear). Equilibrium (parts involved Internal ear). The ear consists of External ear Middle ear Inner ear 1. Sound localisation (front, back, high, low): Pinna provides clues about location of sound.(alter amplitude) 2. Sound collection: act as funnel* to collect sound, Gathers and focuses sound energy on tympanic membrane (ear drum). 3. Protection**. + Wax. 1. Ossicles amplify vibrations of tympanic membrane to oval window. 2. This is needed for movement of sound waves in the fluid of the inner ear. 3. protection from constant loud noise, but not sudden noise, latency of msec. 4. magnifying effect. 1. transduction: convert sound waves (mechanical) into nerve impulses. 2. Transmission: sound auditory signals to the CNS. Inner ear: Cochlea (hearing function). semicircular canals (hearing and balance). 8 * Ear drum is not flat instead its funnel shape collects the waves on one central point of the tympanic membrane.

9 Functions of ear: Middle ear It is a space between tympanic membrane and the inner ear (opens via eustachian tube into nasopharynx). Other function of the tube: draining accumulated fluids inside cochlea into nasopharynx, ex: when fluid accumulate due to infection Ossicles: Manbrium of the malleus attached to the back of the tympanic membrane. And its short process attached to the incus. The incus then articulates with the head of the stapes. And stapes s foot plate attached to the oval window. 9 Muscles: They help us to reduce and minimize the sound sound. Muscles contract reflexly in response to constant loud sound (over 70db). Contraction of the tensor tympani pulls the manubruim & makes the tympanic m. Tens. Thus decreasing the vibration. Contraction of the stapeduis pull the foot plate outward so thatvibration are reduced. Protection from constant loud noise, but not sudden noise, latency of msec.

10 Cont. Transmission of sound through the middle ear: sound waves vibrate the tympanic membrane Tympanic membrane moves the handle of malleus Incus moves Stapes move in & out of the oval window pressure transmitted through cochlea cause stimulation of hair cells in the organ of corti which will stimulate the auditory nerve. Middle ear magnifying effect: The force from a large surface area (drum/tympanic membrane) is concentrated to a small (oval window) at a ratio of 17:1 Lever action of ossicles: increase the force of movement 1:3 times. The total increase is = 22 times. ONLY IN FEMALES SLIDES Two mechanisms of magnifying sound: 1- The size of tympanic membrane is 17 times bigger than the membrane covering the oval window so the waves are magnified (concentrated) 17 times on the oval window (pats الخفافيش has very large tympanic membranes thus they can hear more efficiently). 2- the size difference between the 3 ossicles is 1.3 (and they work like gears أتراس الساعة each bone makes the next one moves more). Guyton corner: The ossicular lever system does not increase the movement distance of stapes, as is commonly believed. Instead, the system actually reduces the distance but increases the force of movement about 1.3 times. 10

11 Cochlea The cochlea is a system of 3 coiled tubes (divided by the basilar membrane & the reissners membrane) through its length filled with fluid: A. Scala vestibule. B. Scala media (cochlear duct): 1. Vestibular membrane: separates scala media from scala vestibule (very thin). 2. Basilar membrane: separates scala media from scala tympani. 3. Tectorial membrane: attached to the sterocelia of hair cells. 4. Organ of corti (hearing sense organ) with hairs of cells (stereocilia) C. Scala tympani. Organ of corti: Located (resting) on the basilar m. Contain inner & outer hair cells Extend from base to apex Tube Na K Scala Vestibuli * high low Scala Tympani * high low Scala Media ** low high 11 * Similar to extra cellular fluid. ** Similar to intracellular fluid.

12 ONLY IN MALES SLIDES Cochlea 12

13 Cochlea: hair cells Steroclia extend from the top Arrangement: Three rows of outer hair cells (attached to the reticular lamina or tectorial membrne) One row of inner hair cells (not attached to tectorial membrane) Functions: inner hair cells Function of hair cells outer hair cells Striocellia not embedded in tectorial membrane, but bent by fluid movement under the tectorial membrane. They are primary receptors for sound, transducing fluid movement in cochlea into action potential in the auditory nerve. Large number, but stimulate only small fraction of nerve fibres in the cochlear nerve. If damaged, significant loss of hearing (they control the sensitivity of inner hair cells to particular sound frequency). ONLY IN FEMALES SLIDES 13

14 Doctors explanations of previous slide We hear through inner hair cells outer hair cells control the ability of inner hair cells to hear; that is by a two way mechanism between the outer hair cells and the brain: First from outer hair cells to nerve fibers to brain. Then from brain to basilar membrane (to make basilar membrane more tense or more loose similar to musical شبيه بأوتار اال الت الموسيقية instruments) So outer hair cells controls the reflex between the brain and basilar membrane. When basilar membrane is tense the inner hair cells will be in touch with outer hair cells but when the basilar لما ير ي خ البازيالر مم ربين اإلنر ه رب سلز membrane is loose inner hair cells will be a bit away of outer hair cells downward and thus when tectorial membrane moves up and down the inner hair cells won t be as sensitive تكون نازلة لتحت to outer hair cells as before. So this mechanism determine inner hair cells sensitivity to different frequencies. مشابهة لآلالت الموسيقية الوترية لما يكون الوتر مشدود يكون الصوت مختلف عن لما يكون الوتر مر ي خ. 14

15 Receptors & endocochlear potentials 1. Sound transmission into the inner ear cause upper & lower movements of the reticular membrane (tectorial membrane). 2. produce bending of steriocillia of the hair cells alternatively open & close cation channels at the tip of the steriocillia. 3. (inward current) depolarization. 4. (outward current) hyperpolarization. 5. the net results is depolarization. 6. Production of cells receptors potentials release of neurotransmitter production of action potentials. Inner hair cells communicate via a chemical synapse (Glutamate) with the terminals (dendrites) of spiral ganglion neurons. These 1st order (type 1) neurons are bipolar. The collection of their cell bodies form the spiral ganglion. Their axons (central) (form the auditory nerve; cranial nerve VIII) make their way and synapse on the cochlear nucleus in the medulla. 15

16 The central auditory pathway This pathway begins in the organ of corti: 1. Spiral ganglion neurons (Cochlea). 2. Cochlear nerve (VIII). 3. Cochlear nuclei (Medulla). 4. Superior olivary complex (Pons) (bilateral). 5. Lateral lemniscus. 6. Inferior colliculus (Midbrain). 7. Medial geniculate nucleus (Thalamus). End in the primary auditory cortex (are 41& 42, superior temporal gyrus in the temporal lobe of the brain). Fibres end in the auditory area, where it is heard, then interpretation occurs in the auditory association areas (wernikes area)*.if wermikes area damaged will hear the sound but we can not interpret the meaning of sound. There is a bilateral cortical connection of auditory area. Thus damage to one side only slightly reduces hearing. There are 4 relay stations in CNS for sound signals. 16 * Wernikes area is in posterior end of superior temporal gyrus, It is next to primary auditory area so we can hear by the primary area but understand what s heard by Wernikes area.

17 ONLY IN MALES SLIDES Cont. 17

18 ONLY IN MALES SLIDES The central auditory pathway Organ of Corti: Located within the cochlea. Hearing receptors. hair cells on the basilar membrane. Gel-like tectorial membrane is capable of bending hair cells. Cochlear nerve attached to hair cells transmits nerve impulses to auditory cortex on temporal lobe. 18

19 Events involved in activating hair cells This Slide Is Very Important ONLY IN MALES SLIDES 19

20 Masking effect Presence of one sound decreases an individual's ability to hear other sounds. This phenomenon is known as masking. Presence of background noise affect the ability to hear another sound, due to some receptors are in refractory period. Masking is more clear if two sound are having the same frequencies. Noise pollution: Noise pollution is an environmental hazard Exposure to sound intensity above 80dB may damage outer hair cells Sound localization: ONLY IN FEMALES SLIDES Differences in the time arrival of the sound wave at the ears (time-lag). Differences in the loudness. ONLY IN MALES SLIDES 20

21 Cont. Extra Conduction of sound wave Conduction of sound wave Air conduction Normal situation of hearing, sound travel in air causes vibration of Tympanic m., transmitted by ossicles to the oval window. Bone conduction Sound cause vibration of skull bones directly transmitting the sound vibration to the cochlea Ex: when placing tuning fork on the head or mastoid process. Tonotopic mapping of frequency in the basilar membrane 21

22 Typical hearing disorders Deafness Conductive hearing loss Inadequate transmission of sound through external or middle ear due to: Blocked auditory canal (wax, fluid). Repeated infection Perforated drum. Restriction of ossicular movements (e.g. By fibrosis or calicification) / destruction of ossicles, repeated infection may lead to this fibrosis and adhesions. Osteosclerosis (pathological fixation of stapes on the oval window). All sound frequencies are equally affected. Bone conduction is better than air conduction, because air conduction is disturbed. Normally: air conduction is better than bone conduction. Both air and bone conduction is disturbed. Perceptive Sensorineural (nerve) Hearing loss caused by disruption anywhere in pathway from hair cells to the auditory cortex / congenital or damage to cochlea or auditory nerve pathway due to: Loss of hair cells (explosion, chronic loud noise). Damage to vestibulocochlear nerve (VIII). Damage to nuclei / tracts to the cortex. Toxins (antibiotics, gentamycine), Damages cochlea if used for more than 2-3 weeks. Inflammation. Vascular. Tumour. Both air and bone conduction are affected. 22 * Neuronal presbycusis: degenerative age related process occurs as hair cells wear out with use (loss of ~ 40% of hair cells by age 65) * Cochlear implants have become available (do not restore normal hearing!)

23 Hearing tests Hearing tests 1. rinne s test 2. Weber s tes 3. Audiometer The base of a vibrating tuning fork is placed on mastoid process until the sound is not heard. Then the prongs of the fork held in air near the ear. Normal subject continue to hear near ear (positive test). If not reveres the test (if heard near the mastoid process, negative test) ONLY IN FEMALES SLIDES A vibrating tuning fork is placed on the middle of the head. The patient answers where the sound is coming from: the left ear, the right ear, or both. Weber test results: Normal hearing will indicate sound in both ears. Conductive loss: sound travels towards the poor ear (lateralization to bad ear). Nerve loss: sound travels towards the good ear Air phone connected to electronic device emitting tones of low & high frequencies. For assessment of degree of deafness. 23

24 ONLY IN MALES SLIDES Hearing tests 24

25 Thank you! اعمل لترسم بسمة اعمل لتمسح دمعة اعمل و أنت تعلم أن هللا ال يضيع أجر من أحسن عمال. The Physiology 436 Team: Females Members: Ghada Almazrou Dania Alkelabi Ghada Alskait Zeena Alkaff Males Members: Talal alenezi Team Leaders: Lulwah Alshiha Laila Mathkour Mohammad Alayed Contact us: References: Females and Males slides. Guyton and Hall Textbook of Medical Physiology (Thirteenth Edition.) 25

MECHANISM OF HEARING

MECHANISM OF HEARING MECHANISM OF HEARING Sound: Sound is a vibration that propagates as an audible wave of pressure, through a transmission medium such as gas, liquid or solid. Sound is produced from alternate compression

More information

Auditory System. Barb Rohrer (SEI )

Auditory System. Barb Rohrer (SEI ) Auditory System Barb Rohrer (SEI614 2-5086) Sounds arise from mechanical vibration (creating zones of compression and rarefaction; which ripple outwards) Transmitted through gaseous, aqueous or solid medium

More information

Unit VIII Problem 9 Physiology: Hearing

Unit VIII Problem 9 Physiology: Hearing Unit VIII Problem 9 Physiology: Hearing - We can hear a limited range of frequency between 20 Hz 20,000 Hz (human hearing acuity is between 1000 Hz 4000 Hz). - The ear is divided into 3 parts. Those are:

More information

ENT 318 Artificial Organs Physiology of Ear

ENT 318 Artificial Organs Physiology of Ear ENT 318 Artificial Organs Physiology of Ear Lecturer: Ahmad Nasrul Norali The Ear The Ear Components of hearing mechanism - Outer Ear - Middle Ear - Inner Ear - Central Auditory Nervous System Major Divisions

More information

Auditory Physiology Richard M. Costanzo, Ph.D.

Auditory Physiology Richard M. Costanzo, Ph.D. Auditory Physiology Richard M. Costanzo, Ph.D. OBJECTIVES After studying the material of this lecture, the student should be able to: 1. Describe the morphology and function of the following structures:

More information

Receptors / physiology

Receptors / physiology Hearing: physiology Receptors / physiology Energy transduction First goal of a sensory/perceptual system? Transduce environmental energy into neural energy (or energy that can be interpreted by perceptual

More information

THE EAR AND HEARING Be sure you have read and understand Chapter 16 before beginning this lab. INTRODUCTION: hair cells outer ear tympanic membrane

THE EAR AND HEARING Be sure you have read and understand Chapter 16 before beginning this lab. INTRODUCTION: hair cells outer ear tympanic membrane BIOLOGY 211: HUMAN ANATOMY & PHYSIOLOGY ****************************************************************************************************** THE EAR AND HEARING ******************************************************************************************************

More information

Required Slide. Session Objectives

Required Slide. Session Objectives Auditory Physiology Required Slide Session Objectives Auditory System: At the end of this session, students will be able to: 1. Characterize the range of normal human hearing. 2. Understand the components

More information

Deafness and hearing impairment

Deafness and hearing impairment Auditory Physiology Deafness and hearing impairment About one in every 10 Americans has some degree of hearing loss. The great majority develop hearing loss as they age. Hearing impairment in very early

More information

Auditory System Feedback

Auditory System Feedback Feedback Auditory System Feedback Using all or a portion of the information from the output of a system to regulate or control the processes or inputs in order to modify the output. Central control of

More information

Chapter 11: Sound, The Auditory System, and Pitch Perception

Chapter 11: Sound, The Auditory System, and Pitch Perception Chapter 11: Sound, The Auditory System, and Pitch Perception Overview of Questions What is it that makes sounds high pitched or low pitched? How do sound vibrations inside the ear lead to the perception

More information

PSY 215 Lecture 10 Topic: Hearing Chapter 7, pages

PSY 215 Lecture 10 Topic: Hearing Chapter 7, pages PSY 215 Lecture 10 Topic: Hearing Chapter 7, pages 189-197 Corrections: NTC 09-1, page 3, the Superior Colliculus is in the midbrain (Mesencephalon). Announcements: Movie next Monday: Case of the frozen

More information

Otoconia: Calcium carbonate crystals Gelatinous mass. Cilia. Hair cells. Vestibular nerve. Vestibular ganglion

Otoconia: Calcium carbonate crystals Gelatinous mass. Cilia. Hair cells. Vestibular nerve. Vestibular ganglion VESTIBULAR SYSTEM (Balance/Equilibrium) The vestibular stimulus is provided by Earth s, and. Located in the of the inner ear, in two components: 1. Vestibular sacs - gravity & head direction 2. Semicircular

More information

Hearing. By: Jimmy, Dana, and Karissa

Hearing. By: Jimmy, Dana, and Karissa Hearing By: Jimmy, Dana, and Karissa Anatomy - The ear is divided up into three parts - Sound enters in through the outer ear and passes into the middle where the vibrations are received and sent to the

More information

Chapter 17, Part 2! The Special Senses! Hearing and Equilibrium!

Chapter 17, Part 2! The Special Senses! Hearing and Equilibrium! Chapter 17, Part 2! The Special Senses! Hearing and Equilibrium! SECTION 17-5! Equilibrium sensations originate within the inner ear, while hearing involves the detection and interpretation of sound waves!

More information

Chapter 17, Part 2! Chapter 17 Part 2 Special Senses! The Special Senses! Hearing and Equilibrium!

Chapter 17, Part 2! Chapter 17 Part 2 Special Senses! The Special Senses! Hearing and Equilibrium! Chapter 17, Part 2! The Special Senses! Hearing and Equilibrium! SECTION 17-5! Equilibrium sensations originate within the inner ear, while hearing involves the detection and interpretation of sound waves!

More information

Sound. Audition. Physics of Sound. Properties of sound. Perception of sound works the same way as light.

Sound. Audition. Physics of Sound. Properties of sound. Perception of sound works the same way as light. Sound Audition Perception of sound works the same way as light. Have receptors to convert a physical stimulus to action potentials Action potentials are organized in brain structures You apply some meaning

More information

Audition. Sound. Physics of Sound. Perception of sound works the same way as light.

Audition. Sound. Physics of Sound. Perception of sound works the same way as light. Audition Sound Perception of sound works the same way as light. Have receptors to convert a physical stimulus to action potentials Action potentials are organized in brain structures You apply some meaning

More information

Intro to Audition & Hearing

Intro to Audition & Hearing Intro to Audition & Hearing Lecture 16 Chapter 9, part II Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Fall 2017 1 Sine wave: one of the simplest kinds of sounds: sound for which pressure

More information

SPECIAL SENSES: THE AUDITORY SYSTEM

SPECIAL SENSES: THE AUDITORY SYSTEM SPECIAL SENSES: THE AUDITORY SYSTEM REVISION OF PHYSICS: WAVES A wave is an oscillation of power, sound waves have two main characteristics: amplitude, which is the maximum displacement or the power of

More information

HEARING. Structure and Function

HEARING. Structure and Function HEARING Structure and Function Rory Attwood MBChB,FRCS Division of Otorhinolaryngology Faculty of Health Sciences Tygerberg Campus, University of Stellenbosch Analyse Function of auditory system Discriminate

More information

Hearing: Physiology and Psychoacoustics

Hearing: Physiology and Psychoacoustics 9 Hearing: Physiology and Psychoacoustics Click Chapter to edit 9 Hearing: Master title Physiology style and Psychoacoustics The Function of Hearing What Is Sound? Basic Structure of the Mammalian Auditory

More information

Learning Targets. Module 20. Hearing Explain how the ear transforms sound energy into neural messages.

Learning Targets. Module 20. Hearing Explain how the ear transforms sound energy into neural messages. Learning Targets Module 20 Hearing 20-1 Describe the characteristics of air pressure waves that we hear as sound. 20-2 Explain how the ear transforms sound energy into neural messages. 20-3 Discuss how

More information

to vibrate the fluid. The ossicles amplify the pressure. The surface area of the oval window is

to vibrate the fluid. The ossicles amplify the pressure. The surface area of the oval window is Page 1 of 6 Question 1: How is the conduction of sound to the cochlea facilitated by the ossicles of the middle ear? Answer: Sound waves traveling through air move the tympanic membrane, which, in turn,

More information

Hearing. By Jack & Tori

Hearing. By Jack & Tori Hearing By Jack & Tori 3 Main Components of the Human Ear. Outer Ear. Middle Ear. Inner Ear Outer Ear Pinna: >Visible part of ear and ear canal -Acts as a funnel to direct sound Eardrum: >Airtight membrane

More information

Chapter 15 Hearing & Equilibrium

Chapter 15 Hearing & Equilibrium Chapter 15 Hearing & Equilibrium ANATOMY OF THE OUTER EAR EAR PINNA is the outer ear it is thin skin covering elastic cartilage. It directs incoming sound waves to the EXTERNAL AUDITORY CANAL, which is

More information

Νευροφυσιολογία και Αισθήσεις

Νευροφυσιολογία και Αισθήσεις Biomedical Imaging & Applied Optics University of Cyprus Νευροφυσιολογία και Αισθήσεις Διάλεξη 11 Ακουστικό και Αιθουσιαίο Σύστημα (Auditory and Vestibular Systems) Introduction Sensory Systems Sense of

More information

Hearing Sound. The Human Auditory System. The Outer Ear. Music 170: The Ear

Hearing Sound. The Human Auditory System. The Outer Ear. Music 170: The Ear Hearing Sound Music 170: The Ear Tamara Smyth, trsmyth@ucsd.edu Department of Music, University of California, San Diego (UCSD) November 17, 2016 Sound interpretation in the auditory system is done by

More information

Music 170: The Ear. Tamara Smyth, Department of Music, University of California, San Diego (UCSD) November 17, 2016

Music 170: The Ear. Tamara Smyth, Department of Music, University of California, San Diego (UCSD) November 17, 2016 Music 170: The Ear Tamara Smyth, trsmyth@ucsd.edu Department of Music, University of California, San Diego (UCSD) November 17, 2016 1 Hearing Sound Sound interpretation in the auditory system is done by

More information

THE COCHLEA AND AUDITORY PATHWAY

THE COCHLEA AND AUDITORY PATHWAY Dental Neuroanatomy Suzanne S. Stensaas, PhD February 23, 2012 Reading: Waxman, Chapter 16, Review pictures in a Histology book Computer Resources: http://www.cochlea.org/ - Promenade around the Cochlea

More information

Systems Neuroscience Oct. 16, Auditory system. http:

Systems Neuroscience Oct. 16, Auditory system. http: Systems Neuroscience Oct. 16, 2018 Auditory system http: www.ini.unizh.ch/~kiper/system_neurosci.html The physics of sound Measuring sound intensity We are sensitive to an enormous range of intensities,

More information

Presentation On SENSATION. Prof- Mrs.Kuldeep Kaur

Presentation On SENSATION. Prof- Mrs.Kuldeep Kaur Presentation On SENSATION Prof- Mrs.Kuldeep Kaur INTRODUCTION:- Sensation is a specialty area within Psychology that works at understanding how are senses work and how we perceive stimuli in the environment.

More information

Hearing. istockphoto/thinkstock

Hearing. istockphoto/thinkstock Hearing istockphoto/thinkstock Audition The sense or act of hearing The Stimulus Input: Sound Waves Sound waves are composed of changes in air pressure unfolding over time. Acoustical transduction: Conversion

More information

AUDITORY APPARATUS. Mr. P Mazengenya. Tel 72204

AUDITORY APPARATUS. Mr. P Mazengenya. Tel 72204 AUDITORY APPARATUS Mr. P Mazengenya Tel 72204 Describe the anatomical features of the external ear Describe the tympanic membrane (ear drum) Describe the walls of the middle ear Outline the structures

More information

Anatomy and Physiology of Hearing

Anatomy and Physiology of Hearing Anatomy and Physiology of Hearing The Human Ear Temporal Bone Found on each side of the skull and contains the organs for hearing and balance Divided into four major portions: - squamous - mastoid - tympanic

More information

Sound and its characteristics. The decibel scale. Structure and function of the ear. Békésy s theory. Molecular basis of hair cell function.

Sound and its characteristics. The decibel scale. Structure and function of the ear. Békésy s theory. Molecular basis of hair cell function. Hearing Sound and its characteristics. The decibel scale. Structure and function of the ear. Békésy s theory. Molecular basis of hair cell function. 19/11/2014 Sound A type of longitudinal mass wave that

More information

Anatomy of the Ear Region. External ear Middle ear Internal ear

Anatomy of the Ear Region. External ear Middle ear Internal ear Ear Lecture Objectives Make a list of structures making the external, middle, and internal ear. Discuss the features of the external auditory meatus and tympanic membrane. Describe the shape, position,

More information

Hearing: the function of the outer, the middle and inner ear. Hearing tests. The auditory pathways

Hearing: the function of the outer, the middle and inner ear. Hearing tests. The auditory pathways Hearing: the function of the outer, the middle and inner ear. Hearing tests. The auditory pathways Dr. Gabriella Kékesi 74. Hearing: the function of the outer, the middle and inner ear. Hearing tests.

More information

What is the effect on the hair cell if the stereocilia are bent away from the kinocilium?

What is the effect on the hair cell if the stereocilia are bent away from the kinocilium? CASE 44 A 53-year-old man presents to his primary care physician with complaints of feeling like the room is spinning, dizziness, decreased hearing, ringing in the ears, and fullness in both ears. He states

More information

THE COCHLEA AND AUDITORY PATHWAY

THE COCHLEA AND AUDITORY PATHWAY Dental Neuroanatomy Suzanne S. Stensaas, PhD April 14, 2010 Reading: Waxman, Chapter 16, Review pictures in a Histology book Computer Resources: http://www.cochlea.org/ - Promenade around the Cochlea HyperBrain

More information

Before we talk about the auditory system we will talk about the sound and waves

Before we talk about the auditory system we will talk about the sound and waves The Auditory System PHYSIO: #3 DR.LOAI ZAGOUL 24/3/2014 Refer to the slides for some photos. Before we talk about the auditory system we will talk about the sound and waves All waves have basic characteristics:

More information

Ear. Utricle & saccule in the vestibule Connected to each other and to the endolymphatic sac by a utriculosaccular duct

Ear. Utricle & saccule in the vestibule Connected to each other and to the endolymphatic sac by a utriculosaccular duct Rahaf Jreisat *You don t have to go back to the slides. Ear Inner Ear Membranous Labyrinth It is a reflection of bony labyrinth but inside. Membranous labyrinth = set of membranous tubes containing sensory

More information

9.01 Introduction to Neuroscience Fall 2007

9.01 Introduction to Neuroscience Fall 2007 MIT OpenCourseWare http://ocw.mit.edu 9.01 Introduction to Neuroscience Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 9.01 Recitation (R02)

More information

Printable version - Hearing - OpenLearn - The Open University

Printable version - Hearing - OpenLearn - The Open University Skip to content Accessibility Sign in Contact Search the OU The Open University Study at the OU Research at the OU OU Community About the OU Hearing Printable page generated Saturday, 12 November 2011,

More information

Carlson (7e) PowerPoint Lecture Outline Chapter 7: Audition, the Body Senses, and the Chemical Senses

Carlson (7e) PowerPoint Lecture Outline Chapter 7: Audition, the Body Senses, and the Chemical Senses Carlson (7e) PowerPoint Lecture Outline Chapter 7: Audition, the Body Senses, and the Chemical Senses This multimedia product and its contents are protected under copyright law. The following are prohibited

More information

BCS 221: Auditory Perception BCS 521 & PSY 221

BCS 221: Auditory Perception BCS 521 & PSY 221 BCS 221: Auditory Perception BCS 521 & PSY 221 Time: MW 10:25 11:40 AM Recitation: F 10:25 11:25 AM Room: Hutchinson 473 Lecturer: Dr. Kevin Davis Office: 303E Meliora Hall Office hours: M 1 3 PM kevin_davis@urmc.rochester.edu

More information

Auditory Physiology PSY 310 Greg Francis. Lecture 29. Hearing

Auditory Physiology PSY 310 Greg Francis. Lecture 29. Hearing Auditory Physiology PSY 310 Greg Francis Lecture 29 A dangerous device. Hearing The sound stimulus is changes in pressure The simplest sounds vary in: Frequency: Hertz, cycles per second. How fast the

More information

PSY 310: Sensory and Perceptual Processes 1

PSY 310: Sensory and Perceptual Processes 1 Auditory Physiology PSY 310 Greg Francis Lecture 29 A dangerous device. Hearing The sound stimulus is changes in pressure The simplest sounds vary in: Frequency: Hertz, cycles per second. How fast the

More information

Sound Waves. Sensation and Perception. Sound Waves. Sound Waves. Sound Waves

Sound Waves. Sensation and Perception. Sound Waves. Sound Waves. Sound Waves Sensation and Perception Part 3 - Hearing Sound comes from pressure waves in a medium (e.g., solid, liquid, gas). Although we usually hear sounds in air, as long as the medium is there to transmit the

More information

PSY 214 Lecture 16 (11/09/2011) (Sound, auditory system & pitch perception) Dr. Achtman PSY 214

PSY 214 Lecture 16 (11/09/2011) (Sound, auditory system & pitch perception) Dr. Achtman PSY 214 PSY 214 Lecture 16 Topic: Sound, auditory system, & pitch perception Chapter 11, pages 268-288 Corrections: None needed Announcements: At the beginning of class, we went over some demos from the virtual

More information

College of Medicine Dept. of Medical physics Physics of ear and hearing /CH

College of Medicine Dept. of Medical physics Physics of ear and hearing /CH College of Medicine Dept. of Medical physics Physics of ear and hearing /CH 13 2017-2018 ***************************************************************** o Introduction : The ear is the organ that detects

More information

Structure, Energy Transmission and Function. Gross Anatomy. Structure, Function & Process. External Auditory Meatus or Canal (EAM, EAC) Outer Ear

Structure, Energy Transmission and Function. Gross Anatomy. Structure, Function & Process. External Auditory Meatus or Canal (EAM, EAC) Outer Ear Gross Anatomy Structure, Energy Transmission and Function IE N O ME 1 Structure, Function & Process 4 External Auditory Meatus or Canal (EAM, EAC) Outer third is cartilaginous Inner 2/3 is osseous Junction

More information

ID# Exam 2 PS 325, Fall 2003

ID# Exam 2 PS 325, Fall 2003 ID# Exam 2 PS 325, Fall 2003 As always, the Honor Code is in effect and you ll need to write the code and sign it at the end of the exam. Read each question carefully and answer it completely. Although

More information

Anatomy of the ear: Lymphatics

Anatomy of the ear: Lymphatics Anatomy of the ear: 1. External ear which consist of auricle and external auditory canal. The auricle has a framework of cartilage except the lobule, the skin is closely adherent to perichonderium at the

More information

SENSORY SYSTEM VII THE EAR PART 1

SENSORY SYSTEM VII THE EAR PART 1 SENSORY SYSTEM VII THE EAR PART 1 Waves Sound is a compression wave The Ear Ear Outer Ear Pinna Outer ear: - Made up of the pinna and the auditory canal Auditory Canal Outer Ear Pinna (also called the

More information

Perception of Sound. To hear sound, your ear has to do three basic things:

Perception of Sound. To hear sound, your ear has to do three basic things: Perception of Sound Your ears are extraordinary organs. They pick up all the sounds around you and then translate this information into a form your brain can understand. One of the most remarkable things

More information

The cochlea: auditory sense. The cochlea: auditory sense

The cochlea: auditory sense. The cochlea: auditory sense Inner ear apparatus 1- Vestibule macula and sacculus sensing acceleration of the head and direction of gravity 2- Semicircular canals mainly for sensing direction of rotation of the head 1 3- cochlea in

More information

COM3502/4502/6502 SPEECH PROCESSING

COM3502/4502/6502 SPEECH PROCESSING COM3502/4502/6502 SPEECH PROCESSING Lecture 4 Hearing COM3502/4502/6502 Speech Processing: Lecture 4, slide 1 The Speech Chain SPEAKER Ear LISTENER Feedback Link Vocal Muscles Ear Sound Waves Taken from:

More information

Chapter 13 Physics of the Ear and Hearing

Chapter 13 Physics of the Ear and Hearing Hearing 100 times greater dynamic range than vision Wide frequency range (20 ~ 20,000 Hz) Sense of hearing Mechanical system that stimulates the hair cells in the cochlea Sensors that produce action potentials

More information

Chapter 7. Audition, the Body Senses, and the Chemical Senses. Copyright Allyn & Bacon 2004

Chapter 7. Audition, the Body Senses, and the Chemical Senses. Copyright Allyn & Bacon 2004 Chapter 7 Audition, the Body Senses, and the Chemical Senses This multimedia product and its contents are protected under copyright law. The following are prohibited by law: any public performance or display,

More information

Ganglion Cells Blind Spot Cornea Pupil Visual Area of the Bipolar Cells Thalamus Rods and Cones Lens Visual cortex of the occipital lobe

Ganglion Cells Blind Spot Cornea Pupil Visual Area of the Bipolar Cells Thalamus Rods and Cones Lens Visual cortex of the occipital lobe How We See How We See Cornea Ganglion Cells whose axons form the optic nerve Blind Spot the exit point at the back of the retina Pupil which is controlled by the iris Bipolar Cells Visual Area of the Thalamus

More information

Cranial Nerve VIII (The Vestibulo-Cochlear Nerve)

Cranial Nerve VIII (The Vestibulo-Cochlear Nerve) Cranial Nerve VIII (The Vestibulo-Cochlear Nerve) Please view our Editing File before studying this lecture to check for any changes. Color Code Important Doctors Notes Notes/Extra explanation Objectives

More information

SPECIAL SENSES PART I: OLFACTION & GUSTATION

SPECIAL SENSES PART I: OLFACTION & GUSTATION SPECIAL SENSES PART I: OLFACTION & GUSTATION 5 Special Senses Olfaction Gustation Vision Equilibrium Hearing Olfactory Nerves Extend through cribriform plate into nasal cavity on both sides of nasal septum

More information

SOLUTIONS Homework #3. Introduction to Engineering in Medicine and Biology ECEN 1001 Due Tues. 9/30/03

SOLUTIONS Homework #3. Introduction to Engineering in Medicine and Biology ECEN 1001 Due Tues. 9/30/03 SOLUTIONS Homework #3 Introduction to Engineering in Medicine and Biology ECEN 1001 Due Tues. 9/30/03 Problem 1: a) Where in the cochlea would you say the process of "fourier decomposition" of the incoming

More information

Unit VIII Problem 9 Anatomy of The Ear

Unit VIII Problem 9 Anatomy of The Ear Unit VIII Problem 9 Anatomy of The Ear - The ear is an organ with 2 functions: Hearing. Maintenance of equilibrium/balance. - The ear is divided into 3 parts: External ear. Middle ear (which is also known

More information

Sound Waves. Sound and Sensa3on. Chapter 9. Sound waves are composed of compression and rarefac3on of air molecules. Domain

Sound Waves. Sound and Sensa3on. Chapter 9. Sound waves are composed of compression and rarefac3on of air molecules. Domain Chapter 9 Majority of illustra3ons in this presenta3on are from Biological Psychology 4 th edi3on ( Sinuer Publica3ons) Sound Waves Sound waves are composed of compression and rarefac3on of air molecules.

More information

Scrub In. What is the function of cerumen? Which part of the ear collects sound waves and directs them into the auditory canal?

Scrub In. What is the function of cerumen? Which part of the ear collects sound waves and directs them into the auditory canal? Scrub In What is the function of cerumen? a. Keeps the ear canal from collapsing b. Helps transmit sound waves c. Protection d. Lubrication Which part of the ear collects sound waves and directs them into

More information

Hearing. PSYCHOLOGY (8th Edition, in Modules) David Myers. Module 14. Hearing. Hearing

Hearing. PSYCHOLOGY (8th Edition, in Modules) David Myers. Module 14. Hearing. Hearing PSYCHOLOGY (8th Edition, in Modules) David Myers PowerPoint Slides Aneeq Ahmad Henderson State University Worth Publishers, 2007 1 Hearing Module 14 2 Hearing Hearing The Stimulus Input: Sound Waves The

More information

Physiology of human perception

Physiology of human perception Physiology of human perception Vision Hearing Thermal and tactile sensations Basic introduction and the list and description of the tasks to be carried out Visible light: 400-700 nm. Vision or sight Anatomy

More information

Activity 1: Anatomy of the Eye and Ear Lab

Activity 1: Anatomy of the Eye and Ear Lab Activity 1: Anatomy of the Eye and Ear Lab 1. Launch the view! Launch Human Anatomy Atlas. Navigate to Quizzes/Lab Activities, find the Eye and Ear Lab section. Launch Augmented Reality mode and scan the

More information

Taste buds Gustatory cells extend taste hairs through a narrow taste pore

Taste buds Gustatory cells extend taste hairs through a narrow taste pore The Special Senses Objectives Describe the sensory organs of smell, and olfaction. Identify the accessory and internal structures of the eye, and explain their function. Explain how light stimulates the

More information

A&P 1. Ear, Hearing & Equilibrium Lab. Basic Concepts. These notes follow Carl s Talk at the beginning of lab

A&P 1. Ear, Hearing & Equilibrium Lab. Basic Concepts. These notes follow Carl s Talk at the beginning of lab A&P 1 Ear, Hearing & Equilibrium Lab Basic Concepts These notes follow Carl s Talk at the beginning of lab In this "Lab Exercise Guide", we will be looking at the basics of hearing and equilibrium. NOTE:

More information

Sound and Hearing. Decibels. Frequency Coding & Localization 1. Everything is vibration. The universe is made of waves.

Sound and Hearing. Decibels. Frequency Coding & Localization 1. Everything is vibration. The universe is made of waves. Frequency Coding & Localization 1 Sound and Hearing Everything is vibration The universe is made of waves db = 2log(P1/Po) P1 = amplitude of the sound wave Po = reference pressure =.2 dynes/cm 2 Decibels

More information

HEAR YE! HEAR YE! (1.5 Hours)

HEAR YE! HEAR YE! (1.5 Hours) HEAR YE! HEAR YE! (1.5 Hours) Addresses NGSS Level of Difficulty: 4 Grade Range: 3-5 OVERVIEW In this activity, students will construct a model ear to learn how different materials transmit sound. Topic:

More information

Hearing and Balance 1

Hearing and Balance 1 Hearing and Balance 1 Slide 3 Sound is produced by vibration of an object which produces alternating waves of pressure and rarefaction, for example this tuning fork. Slide 4 Two characteristics of sound

More information

Copyright 2009 Pearson Education, Inc.

Copyright 2009 Pearson Education, Inc. Outline Nervous System Sensory Systems I. II. III. IV. V. VI. Biol 105 Lecture 11 Chapter 9 Senses Sensory receptors Touch Vision Hearing and balance Smell Senses Sensory receptor cells Sensory receptors

More information

HEARING AND COCHLEAR IMPLANTS

HEARING AND COCHLEAR IMPLANTS HEARING AND COCHLEAR IMPLANTS FRANCIS CREIGHTON, MD NEUROTOLOGY & SKULL BASE SURGERY FELLOW JOHNS HOPKINS SCHOOL OF MEDICINE NOV 9 TH, 2017 THANKS TO: CHARLIE DELLA SANTINA, HEIDI NAKAJIMA AND DOUG MATTOX

More information

The ear: some applied basic science

The ear: some applied basic science Chapter 1 The ear: some applied basic science The pinna The external ear or pinna is composed of cartilage with closely adherent perichondrium and skin. It is developed from six tubercles of the first

More information

ID# Final Exam PS325, Fall 1997

ID# Final Exam PS325, Fall 1997 ID# Final Exam PS325, Fall 1997 Good luck on this exam. Answer each question carefully and completely. Keep your eyes foveated on your own exam, as the Skidmore Honor Code is in effect (as always). Have

More information

Unit # 10 B Assessment of Ears

Unit # 10 B Assessment of Ears In The Name of God (A PROJECT OF NEW LIFE HEALTH CARE SOCIETY KARACHI) Unit # 10 B Assessment of Ears Shahzad Bashir RN, BScN, DCHN, MScN (Std. DUHS) Instructor New Life College of Nursing Updated, January

More information

Lecture 6 Hearing 1. Raghav Rajan Bio 354 Neurobiology 2 January 28th All lecture material from the following links unless otherwise mentioned:

Lecture 6 Hearing 1. Raghav Rajan Bio 354 Neurobiology 2 January 28th All lecture material from the following links unless otherwise mentioned: Lecture 6 Hearing 1 All lecture material from the following links unless otherwise mentioned: 1. http://wws.weizmann.ac.il/neurobiology/labs/ulanovsky/sites/neurobiology.labs.ulanovsky/files/uploads/purves_ch12_ch13_hearing

More information

The Sense Organs 10/13/2016. The Human Eye. 1. Sclera 2. Choroid 3. Retina. The eye is made up of three layers:

The Sense Organs 10/13/2016. The Human Eye. 1. Sclera 2. Choroid 3. Retina. The eye is made up of three layers: The human body gathers information from the outside world by using the five senses of: The Sense Organs 12.3 Sight Hearing Taste Smell Touch This information is essential in helping the body maintain homeostasis.

More information

Auditory and vestibular system

Auditory and vestibular system Auditory and vestibular system Sensory organs on the inner ear inner ear: audition (exteroceptor) and vestibular apparatus (proprioceptor) bony and membranous labyrinths within the temporal bone (os temporale)

More information

Assisting in Otolaryngology

Assisting in Otolaryngology Assisting in Otolaryngology Learning Objectives Identify the structures and explain the functions of the external, middle, and internal ear. Describe the conditions that can lead to hearing loss, including

More information

Special Senses. Mechanoreception Electroreception Chemoreception Others

Special Senses. Mechanoreception Electroreception Chemoreception Others Special Senses Mechanoreception Electroreception Chemoreception Others Recall our receptor types Chemically regulated: Respond to particular chemicals Voltage regulated: respond to changing membrane potential

More information

How Do Our Ears Work? Quiz

How Do Our Ears Work? Quiz The Marvelous Ear How Do Our Ears Work? Quiz 1. How do humans hear sounds? 2. How does human hearing work? Sketch and label the system. 3. Do you know any sensors that detect sound and how they might do

More information

The Ear. Dr. Heba Kalbouneh Assistant Professor of Anatomy and Histology

The Ear. Dr. Heba Kalbouneh Assistant Professor of Anatomy and Histology The Ear Dr. Heba Kalbouneh Assistant Professor of Anatomy and Histology The Ear The ear consists of the external ear; the middle ear (tympanic cavity); and the internal ear (labyrinth), which contains

More information

For this lab you will use parts of Exercise #18 in your Wise lab manual. Please be sure to read those sections before coming to lab

For this lab you will use parts of Exercise #18 in your Wise lab manual. Please be sure to read those sections before coming to lab Bio 322 Human Anatomy Objectives for the laboratory exercise The Eye and Ear Required reading before beginning this lab: Saladin, KS: Human Anatomy 5 th ed (2017) Chapter 17 For this lab you will use parts

More information

Biology 3201 The Nervous System Test

Biology 3201 The Nervous System Test Biology 3201 The Nervous System Test 1. The central nervous system consists of: a. Nerves and neurons c. spinal chord and nerves b. brain and neurons d. brain and spinal chord 2. This part of the brain

More information

Work Design and Industrial Ergonomics - Ear and Noise

Work Design and Industrial Ergonomics - Ear and Noise Department of Industrial Engineering Work Design and Industrial Ergonomics - Ear and Noise Learning outcomes After finishing this chapter, You should be able to Define the sound (physically) and how it

More information

Sensory Systems Vision, Audition, Somatosensation, Gustation, & Olfaction

Sensory Systems Vision, Audition, Somatosensation, Gustation, & Olfaction Sensory Systems Vision, Audition, Somatosensation, Gustation, & Olfaction Sarah L. Chollar University of California, Riverside sarah.chollar@gmail.com Sensory Systems How the brain allows us to see, hear,

More information

Hearing I: Sound & The Ear

Hearing I: Sound & The Ear Hearing I: Sound & The Ear Overview of Topics Chapter 5 in Chaudhuri Philosophical Aside: If a tree falls in the forest and no one is there to hear it... Qualities of sound energy and sound perception

More information

HEARING GUIDE PREPARED FOR CLINICAL PROFESSIONALS HEARING.HEALTH.MIL. HCE_ClinicalProvider-Flip_FINAL01.indb 1

HEARING GUIDE PREPARED FOR CLINICAL PROFESSIONALS HEARING.HEALTH.MIL. HCE_ClinicalProvider-Flip_FINAL01.indb 1 HEARING GUIDE PREPARED FOR CLINICAL PROFESSIONALS HCE_ClinicalProvider-Flip_FINAL01.indb 1 TEMPORAL MUSCLE TEMPORAL BONE EXTERNAL AUDITORY CANAL MALLEUS INCUS STAPES SEMICUIRCULAR CANALS COCHLEA VESTIBULAR

More information

4. Which letter in figure 9.1 points to the fovea centralis? Ans: b

4. Which letter in figure 9.1 points to the fovea centralis? Ans: b Chapter 9: The Sensory System 1. Proprioceptors are involved in the sense of A) pain. B) temperature. C) pressure. D) movement of limbs. 2. Which are chemoreceptors? A) taste B) olfactory C) proprioceptors

More information

Chapter Fourteen. The Hearing Mechanism. 1. Introduction.

Chapter Fourteen. The Hearing Mechanism. 1. Introduction. Chapter Fourteen The Hearing Mechanism 1. Introduction. 2. Hearing. 3. The Ear. 4. The External Ear. 5. The Inner Ear. 6. Frequency Discrimination. 7. The Organ of Corti. 8. Tests and Exrecises. 9. References.

More information

Gathering information the sensory systems; Vision

Gathering information the sensory systems; Vision Visual System Gathering information the sensory systems; Vision The retina is the light-sensitive receptor layer at the back of the eye. - Light passes through the cornea, the aqueous chamber, the lens,

More information

The Ear. The ear can be divided into three major parts: the outer ear, the middle ear and the inner ear.

The Ear. The ear can be divided into three major parts: the outer ear, the middle ear and the inner ear. The Ear The ear can be divided into three major parts: the outer ear, the middle ear and the inner ear. The Ear There are three components of the outer ear: Pinna: the fleshy outer part of the ear which

More information

Hearing I: Sound & The Ear

Hearing I: Sound & The Ear Hearing I: Sound & The Ear Overview of Topics Chapter 5 in Chaudhuri Philosophical Aside: If a tree falls in the forest and no one is there to hear it... Qualities of sound energy and sound perception

More information

Vision and Audition. This section concerns the anatomy of two important sensory systems, the visual and the auditory systems.

Vision and Audition. This section concerns the anatomy of two important sensory systems, the visual and the auditory systems. Vision and Audition Vision and Audition This section concerns the anatomy of two important sensory systems, the visual and the auditory systems. The description of the organization of each begins with

More information

-Detect heat or cold and help maintain body temperature

-Detect heat or cold and help maintain body temperature Sensory Receptors -Transduce stimulus energy and transmit signals to the central nervous system -Reception occurs when a receptor detectd a stimulus -Perception occurs in the brain as this information

More information